The Impact of QRIS and AI on The Effectiveness of Cash Flow Management and Decision-Making in SMEs in Yogyakarta, Indonesia

Hendri Wibowo, Shihezi University, China
Huo Yuan, Shihezi University, China

Abstract


Potensi Quick Response Code Indonesian Standard (QRIS) untuk menjadi pembukuan sederhana dan Artificial Intelligence (AI) ChatGPT sebagai konsultasi digital dapat diadopsi untuk mengatasi kompleksitas yang melekat pada manajemen arus kas dan pengambilan keputusan di UMKM. Penelitian ini menggunakan metode campuran penelitian kuantitatif dan kualitatif dengan menggunakan kuesioner, eksperimen, dan wawancara pada 205 UMKM di Teras Malioboro 1 dan wilayah Yogyakarta dengan 20 UMKM yang melakukan eksperimen dengan mengintegrasikan QRIS dan AI ChatGPT untuk melakukan manajemen arus kas dan pengambilan keputusan yang dianalisis menggunakan SEM PLS 3.2.9 dan SPSS 24. Hasil penelitian ini memberikan inovasi sistem baru yang disebut FlowAI sebagai sistem integrasi QRIS dan AI ChatGPT dalam pengelolaan arus kas dan pengambilan keputusan pada UMKM.

Keywords


AI ChatGPT, Manajemen Arus Kas, Pengambilan Keputusan, QRIS, UMKM

Full Text:

PDF

References


Alirezaie, M., Hoffman, W., Zabihi, P., Rahnama, H., & Pentland, A. (2024). Decentralized Data and Artificial Intelligence Orchestration for Transparent and Efficient Small and Medium-Sized Enterprises Trade Financing. Multidisciplinary Digital Publishing Institute.https://hdl.handle.net/1 721.1/153411

Anupama, Prasanth., Densy, John, Vadakkan., Priyanka, Surendran., Bindhya, Thomas. (2023). Role of Artificial Intelligence and Business Decision Making. International Journal of Advanced Computer Science and Applications, doi: 10.14569/ijacsa.2023.01406103.

Ayu, Astuti, Indriani., Efendi, Syamsul., Ayu, Gumilang, Lestari. (2022). Quick Response Code Indonesian Standard (QRIS), Penjualan dan Kepuasan Pelanggan: Al-Kharaj : Jurnal Ekonomi, Keuangan dan Bisnis Syariah, doi:10.47467/alkharaj.v5i3.2233.

BI.Co.Id .(2022). Quick Response Code Indonesian Standard (QRIS). Retrieved from https://www.bi.go.id/QRIS/defa ult.aspx

Euclides, Lourenço, Chuma., Gabriel, Gomes, de, Oliveira. (2023). Generative AI for Business Decision-Making: A Case of ChatGPT. Management science and business decisions, doi: 10.52812/msbd.63.

Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (p. 197). Springer Nature.

Hu, L.-t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/1070551 9909540118.

Klaus, Hödl. (2023). Artificial Intelligence for Decision Making. doi:10.59646/edbookc2/009.

Nicholas, O. G., Agnes, L. S., & Kenneth, O. (2024). Cash Flow Management and Growth of SMEs in Uganda. Research Journal of Finance and Accounting; Vol 15, No 2 (2024); 25-34.https://www.iiste.org/Journal s/index.php/RJFA/article/view/ 62118

Niels, J., Rouws. (2023). Role of Artificial Intelligence in Decision Making. doi 10.59646/edbookc14/009.

Oriekhova, K.V and Golovko, O.Hr.(2022). Cash Flow Management Strategy. Economic and Law . Doi: 10.154707/econlaw.2022.01.089.

Pratiwi, L. L., Wahyuni, E. T., & Adrianto, Z. (2024). Understanding The Cash Flow Impact on Financial Distress among Hospitality Listed Firms Amidst the Covid-19 Pandemic: The Case of Indonesia. Quantitative Economics and Management Studies, 5(1), 142-152. https://doi.org/10.35877/454RI. qems2322.

Przychocka, I., Sikorski, M., & Milewski, L. (2024). Cash flow management in small and medium enterprises in times of economic uncertainty. https://www.um.edu.mt/library/ oar/handle/123456789/121732.

Resti Tito and Mauree Lorence (2023). ChatGPT (Generated Pre- Trained Transformer) As an Adjunct to Mental Health Interventions: A Commentary. International journal of psychology and psychoanalysis, 9(1) doi: 10.23937/2572-4037.1510062.

Ricky, Nanda, Pratama., Yakob, Utama, Chandra. (2023). Analysis of Intention to Use Factors using Quick Response Code Indonesia Standard (QRIS) in Indonesia.doi: 10.1109/ICCoSITE57641.2023. 10127840.

Rima, Rachmawati. (2023). GPT Chat: Opportunities and Challenges in the Learning Process of Arabic Language in Higher Education. doi: 10.55849/jiltech.v2i1.439

Rodiana (2022). QRIS Efficiency in Improving Digital Payment Transaction Service for Culinary Micro-Small and Medium Enterprises in Depok City. Vol. 3, No.2, pp. 67-73, 2022. http://iorajournal.org/indx.php/o rics/index.

Santoso, S. (2014). Statistik Parametrik Konsep dan Aplikasi dengan SPSS. Elex Media Komputndo.

Som, S, Biswas. (2023). The Function of chat GPT in Social Media: According to chat GPT. Social Science Research Network, doi: 10.2139/ssrn.4405389.

Tawil, A.-R. H., Mohamed, M., Schmoor, X., Vlachos, K., & Haidar, D. (2024). Trends and Challenges Towards Effective Data-Driven Decision Making in UK Small and Medium-Sized Enterprises: Case Studies and Lessons Learnt from the Analysis of 85 Small and Medium-Sized Enterprises. https://publications.aston.ac.uk/i d/eprint/46546/

Thomas, Michael G. (2022). Budgeting and Cash Flow Management. De Gruyter Handbook of Personal Finance page 87-100. Doi: 10.1515/9783110727692- 006.

Tom Mercer (2024). How to use AI to help with cash flow forecasting.

Retrieved from https://beanninjas.com/blog/ai- cash-flow-forecasting/.

Zaleskiewicz, T and Traczyk, J. (2020). Emotion and Financial Decision Making. Psychological Perspective on Financial Decision Making, 2020. ISBN: 978-3-030-45499.

Zhang, Jiehuang. (2023). Methodology and tools for designing ethical artificial intelligence systems. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/16 9362. Doi:https://doi.org/10.32657%2F10356%2F169362


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Hendri Wibowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.