PENGELOMPOKAN DAERAH RAWAN TANAH LONGSOR DI KABUPATEN MAGELANG MENGGUNAKAN ALGORITMA FUZZY C-MEANS

Wahyu Annisa Lestari, Prodi Matematika FMIPA UNY, Indonesia
Nur Hadi Waryanto, Prodi Matematika FMIPA UNY, Indonesia

Abstract


Tujuan dari penelitian ini adalah mengetahui hasil pengelompokan dan karakteristik cluster hasil pengelompokan daerah rawan tanah longsor di Kabupaten Magelang menggunakan algoritma Fuzzy C-Means. Penelitian ini menggunakan data sekunder yang diperoleh dari Badan Pusat Statistik Kabupaten Magelang dan Rencana Pembangunan Jangka Menengah Daerah Kabupaten Magelang Tahun 2019-2024. Proses pengelompokan dimulai dengan menangani missing value (Mean Imputation), kategorisasi data, standarisasi data (Z score), pengelompokan dengan Fuzzy C-Means, validasi cluster, interpretasi, pemetaan hasil pengelompokan, dan pembuatan Graphical User Interface (GUI). Hasil dari penelitian menunjukkan bahwa jumlah cluster terbaik adalah 2 cluster berdasarkan Partition Coefficient Index (PCI) dan Modified Partition Coefficient Index (MPCI) dengan nilai 0,5278043 dan 0,05560862. Cluster 1 memiliki banyak anggota 11 kecamatan dan cluster 2 memiliki banyak anggota 10 kecamatan. Cluster 1 sebagian besar karakteristiknya meliputi jenis tanah yang sangat peka terhadap erosi (Regosol, Litosol) dan memiliki desa/kelurahan dengan topografi lereng/puncak. Sedangkan 10 kecamatan yang masuk dalam cluster 2 merupakan daerah yang tidak rawan tanah longsor karena sebagian besar memiliki desa/kelurahan dengan topografi dataran dan tanah Aluvial yang tidak peka terhadap erosi.


Full Text:

XML

References


Afif, M.F., & Subekti, R. (2017). Penerapan Algoritma Self Organizing Map Dalam Memetakan Daerah Rawan Bencana Tanah Longsor di Indonesia. S1 thesis, UNY.

Alimohammadlou, Y., Najafi, A., & Gokceoglu, C. (2014). Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran. CATENA, 120, 149–162. http://dx.doi.org/10.1016/j.catena.2014.04.009

Basofi, A., Fariza, A., & Nailussaaada. (2017). Landslide susceptibility mapping using ensemble fuzzy clustering: A case study in ponorogo, east Java, Indonesia. 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE). https://doi.org/10.1109/icitisee.2017.8285540

Bezdek, J. C. (1973). Cluster Validity with Fuzzy Sets. Journal of Cybernetics, 3(3), 58–73. https://doi.org/10.1080/01969727308546047

Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. https://doi.org/10.1007/978-1-4757-0450-1

BNPB. (2016). Risiko Bencana Indonesia. Jakarta: Badan Nasional Penanggulangan Bencana.

BPS. (2020). Kabupaten Magelang Dalam Angka 2020. Magelang: BPS Kabupaten Magelang.

Cebeci, Z., Yildiz, F., Kavlak, A.T., Cebeci, C., & Onder, H. (2018). ppclust-Probabilistic and Possibilistic Cluster Analysis. https://cran.r-project.org/web/packages/ppclust/index.html

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2019). shiny: Web Application Framework for R. https://cran.r-project.org/web/packages/shiny/index.html

Dave, R. N. (1996). Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognition Letters, 17(6), 613–623. https://doi.org/10.1016/0167-8655(96)00026-8

Dunn, J.C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3): 32–57. https://doi.org/10.1080/01969727308546046

Dunnington, D. (2017). prettymapr: Scale Bar, North Arrow, and Pretty Margins in R. https://cran.r-project.org/web/packages/prettymapr/index.html

Giordani, P., Ferraro, M.B., & Serafini, A. (2019). fclust: Fuzzy Clustering. https://cran.r-project.org/web/packages/fclust/index.html

Guo, Z., Shi, Y., Huang, F., Fan, X., & Huang, J. (2021). Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geoscience Frontiers, 12(6), 101249. https://doi.org/10.1016/j.gsf.2021.101249

Heil, J., Häring, V., Marschner, B., & Stumpe, B. (2019). Advantages of fuzzy k-means over k-means clustering in the classification of diffuse reflectance soil spectra: A case study with West African soils. Geoderma, 337, 11–21. https://doi.org/10.1016/j.geoderma.2018.09.004

Hijmans, R.J. (2017). raster: Geographic Data Analysis and Modeling. http://cran.r-project.org/web/packages/raster/index.html

Karnawati, D. (2013). Bencana Alam Gerakan Massa Tanah di Indonesia dan Upaya Penanggulangan. Yogyakarta: Universitas Gajah Mada.

Krishnapuram, R., & Keller, J. M. (1993). A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1(2), 98–110. https://doi.org/10.1109/91.227387

Krishnapuram, R., & Keller, J. M. (1996). The possibilistic C-means algorithm: insights and recommendations. IEEE Transactions on Fuzzy Systems, 4(3), 385–393. https://doi.org/10.1109/91.531779

Melchiorre, C., Matteucci, M., Azzoni, A., & Zanchi, A. (2008). Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology,94(3-4),379–400. http://dx.doi.org/10.1016/j.geomorph.2006.10.035

Mingoti, S.A., & Lima, J.O. (2006). Comparing SOM neural network with Fuzzy C-Means, K-Means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174(3), 1742–1759. https://doi.org/10.1016/j.ejor.2005.03.039

Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, 3(3), 370–379. https://doi.org/10.1109/91.413225

Pangaribuan, J., Sabri, L. M., & Ammarrohman, F. J. (2019). Analisis Daerah Rawan Bencana Tanah Longsor Di Kabupaten Magelang Menggunakan Sistem Informasi Geografis Dengan Metode Standar Nasional Indonesia dan Analythical Hierarchy Process. Jurnal Geodesi Undip, 8(1), 288–297.

Peraturan Daerah Nomor 5 Tahun 2011 Tentang Rencana Tata Ruang Wilayah Kabupaten Magelang Tahun 2010-2030.

Puslit Tanah. (2004). Klasifikasi Intersitas Curah Hujan. Puslit Tanah, Bogor.

Rencana Pembangunan Jangka Menengah Daerah Kabupaten Magelang Tahun 2019-2024

Sobirin, S. (2013). Pengolahan Sumber Daya Air Berbasis Masyarakat. Presentasi disampaikan pada Seminar Reboan Pusat Penelitian Geoteknologi LIPI, Tanggal 8 Mei 2012, Bandung.

Sugianti, K. Mulyadi, D. Sarah, D. (2014). Pengklasan Tingkat Kerentanan Gerakan Tanah Daerah Sumedang Selatan Menggunakan Metode Storie. Bandung: Pusat Penelitian Geoteknologi LIPI.

Wang, W dan Zhang, Y. (2007). On Fuzzy Cluster Validity Indices. Fuzzy Sets System, Vol. 158, No. 19, pp.2095-2117.

Wickham, H., Chang, W., Henry, L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2016). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://cran.r-project.org/web/packages/ggplot2/index.html

Wickham, H., Hester, J., Francois, R., & Francois, R. (2017). readr: Read Rectangular Text Data. https://cran.r-project.org/web/packages/readr/index.html

Wutsqa DU, Aryani AS, Kismiantini, Andayani S. (2020). Fuzzy C-means Clustering for Landslide Mapping in Malang Regency. Journal of Advanced Research in Dynamical and Control Systems,12(07): 1653-1659. https://doi.org/10.5373/JARDCS/V12SP7/20202271


Refbacks

  • There are currently no refbacks.


 


Online ISSN (e-ISSN): 3031-1152

Creative Commons LicenseJurnal Kajian dan Terapan Matematika by https://journal.student.uny.ac.id/index.php/jktm/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.