PENYELESAIAN MASALAH RUTE TERPENDEK DISTRIBUSI KERTAS DI CV. MARGOTAMA FANCINDO YOGYAKARTA MENGGUNAKAN METODE NEAREST NEIGHBOUR DAN METODE SAVING MATRIX
Abstract
Abstrak
Kertas merupakan salah satu kebutuhan manusia dalam kehidupan sehari-hari, sehingga pemakaian kertas setiap harinya berjumlah sangat besar. Tingginya permintaan kertas membuat perusahaan distribusi kertas pun semakin meningkat. Agar pendistribusian dapat mencapai hasil yang optimal, maka diperlukan solusi dalam masalah sistem transportasi. Permasalahan sistem transportasi ini termasuk dalam Capacitated Vehicle Routing Problem (CVRP) yaitu permasalahan penentuan rute kendaraan untuk melayani beberapa pelanggan dengan batasan kapasitas. Penelitian ini bertujuan untuk menyelesaikan masalah rute distribusi kertas di CV. Margotama Fancindo Yogyakarta menggunakan Metode Nearest Neighbour dan Metode Saving Matrix, kemudian membandingkan hasil penyelesaian dua metode tersebut.
Penelitian ini dilakukan di CV. Margotama Fancindo Yogyakarta dalam pendistribusian kertas. Data yang diperlukan antara lain jarak antara depot dengan pelanggan dan jarak antar pelanggan, jumlah permintaan masing-masing pelanggan, jumlah kendaraan yang dioperasikan, dan kapasitas setiap kendaraan. Data penelitian kemudian diolah dan diselesaikan dengan Metode Nearest Neighbour dan Metode Saving Matrix. Metode Nearest Neighbour secara umum merupakan metode yang digunakan untuk memecahkan masalah pemilihan rute dengan cara mencari jarak terpendek untuk menempuh lokasi pengiriman. Sementara, secara umum langkah-langkah Metode Saving Matrix adalah menentukan matriks jarak, menentukan matriks penghematan, mengalokasikan kendaraan dan rute, dan mengurutkan pelanggan pada suatu rute.
Hasil penelitian menunjukkan bahwa Metode Nearest Neighbour lebih baik dalam segi jarak dibandingkan Metode Saving Matrix dalam menyelesaikan Capacitated Vehicle Routing Problem (CVRP). Metode Nearest Neighbour menghasilkan jarak tempuh 236,85 km dan Metode Saving Matrix menghasilkan total jarak tempuh 240,62 km.
Kata kunci: CVRP, Metode Nearest Neighbour, Metode Saving Matrix, rute, distribusi
Abstract
Paper is one of the human needs in everyday life, so the use of it every day is very high. The high demand for paper makes the number of paper distribution companies increasing. In order to achieve optimal distribution results, a solution is needed to the problem of the transportation system. The problems of this transportation system are included in the Capacitated Vehicle Routing Problem (CVRP) which is the problem of determining the route of the vehicle to serve several customers with capacity limitation. This research aims to solve the problem of paper distribution route in CV. Margotama Fancindo Yogyakarta using the Nearest Neighbour Method and the Saving Matrix Method then compares the results of the two methods.
This research was conducted at CV. Margotama Fancindo Yogyakarta in the distribution of paper. The required data were the distance between the depot with the customer and the distance between customers, the number of requests of each customer, the number of vehicles operated, and the capacity of each vehicle.
Research data is then processed and completed with the Nearest Neighbour Method and Saving Matrix Method. The Nearest Neighbors method is generally the method used to solve the problem of route selection by finding the shortest distance to travel to the delivery location. In general, the steps of the Saving Matrix Method are to determine the distance matrix, determine the austerity matrix, allocate vehicles and routes, and sort customers on a route.
The results show that the Nearest Neighbors Method is better in terms of distance than the Saving Matrix Method in solving the Capacitated Vehicle Routing Problem (CVRP). The Nearest Neighbors method yielded 236.85 km of distance and the Saving Matrix Method resulted in a total distance of 240.62 km.
Keywords: CVRP, Nearest Neighbors Method, Saving Matrix Method, route, distribution
Full Text:
PDFRefbacks
- There are currently no refbacks.
Online ISSN (e-ISSN): 3031-1152
Jurnal Kajian dan Terapan Matematika by https://journal.student.uny.ac.id/index.php/jktm/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |