

Volume 12 Edisi 02, Oktober, 2025, 1-16 https://journal.student.uny.ac.id/ojs/index.php/pfisika/index

PENGEMBANGAN MEDIA PEMBELAJARAN FISIKA BERBANTUAN SCRATCH MODEL PROBLEM BASED LEARNING UNTUK MENINGKATKAN KETERAMPILAN BERPIKIR KRITIS DAN PHYSICS IDENTITY SISWA SMA

Amanda Nur Isnaini*, Universitas Negeri Yogyakarta, Indonesia Pujianto, Universitas Negeri Yogyakarta, Indonesia *e-mail: amanda49fmipa.2021@student.uny.ac.id (corresponding author)

Abstrak. Tujuan penelitian ini adalah: 1) menghasilkan media pembelajaran Scratch yang layak menurut penilaian ahli dan praktisi untuk meningkatkan keterampilan berpikir kritis dan physics identity siswa SMA; 2) menghasilkan media pembelajaran Scratch yang praktis digunakan untuk meningkatkan keterampilan berpikir kritis dan physics identity siswa SMA; dan 3) mengetahui efektivitas media pembelajaran Scratch pada pembelajaran fisika materi gelombang bunyi dalam meningkatkan keterampilan berpikir kritis dan physics identity siswa SMA. Desain penelitian yang digunakan adalah R&D dengan model 4D (Define, Design, Develop, dan Disseminate). Subjek penelitian yaitu siswa kelas XI SMA yang berlokasi Klaten. Teknik pengumpulan data meliputi tes berupa pretest, posttest, dan angket, non tes, warwancara serta observasi. Kelayakan dan kepraktisan media pembelajaran Scratch yang dikembangkan dianalisis dengan teknik simpangan baku ideal (SBI), sedangkan efektivitas media pembelajaran Scratch dianalisis dengan paired sample t-test, manova, dan effect size. Hasil penelitian menunjukkan bahwa: 1) media pembelajaran Scratch model Problem Based Learning pada materi gelombang bunyi layak digunakan berdasarkan hasil penilaian ahli dan praktisi pendidikan, 2) media pembelajaran Scratch yang dikembangkan praktis digunakan berdasarkan respon siswa pada uji terbatas yang dilakukan; dan 3) media pembelajaran Scratch efektif digunakan sebagai media pembelajaran fisika materi gelombang bunyi untuk meningkatkan keterampilan berpikir kritis dan physics identity siswa SMA.

Kata Kunci: media pembelajaran fisika, Scratch, problem based learning, keterampilan berpikir kritis, physics identity

Abstract. This study aims to: 1) to produce Scratch learning media that is feasible according to expert and practitioner assessments to improve critical thinking skills and physics identity of high school students; 2) to produce Scratch learning media that is practical to use to improve critical thinking skills and physics identity of high school students; and 3) to determine the effectiveness of Scratch learning media in learning physics sound waves material in improving critical thinking skills and physics identity of high school students. The research design used is R&D with 4D model (Define, Design, Develop, and Disseminate). The research subjects were class XI high school students located in Klaten. Data collection techniques include tests in the form of pretests, posttests, and questionnaires, non-tests, interviews and observations.

The feasibility and practicality of the Scratch learning media developed were analyzed by the ideal standard deviation (SBI) technique, while the effectiveness of Scratch learning media was analyzed by paired sample t-test, manova, and effect size. The results showed that: 1) Scratch learning media for Problem Based Learning model on sound wave material is feasible to use based on the results of expert assessments and educational practitioners, 2) Scratch learning media developed is practical to use based on student responses in limited tests conducted; and 3) Scratch learning media is effective to be used as physics learning media for sound wave material to improve critical thinking skills and physics identity of high school students.

Keywords: physics learning media, Scratch, problem based learning, critical thinking skills, physics identity

PENDAHULUAN

Perkembangan teknologi di era revolusi industri 4.0 telah membawa perubahan di berbagai aspek kehidupan manusia. Hadirnya teknologi seperti *internet of things, artificial intelligence, cloud computing*, dan *big data* menciptakan konektivitas dan otomatisasi yang kompleks, memungkinkan pengumpulan dan analisis data secara real time untuk meningkatkat efisiensi, produktivitas, dan inovasi di berbagai sektor (Oktareza et al., 2024). Disamping itu, kesiapan sumber daya manusia, infrastruktur yang memadai, dan kebijakan pendukung sangat mempengaruhi keberlanjutan tranformasi digital ini. Pada sektor pendidikan, perkembangan teknologi telah menghadirkan transformasi signifikan yang mengubah cara mengajar dan belajar. Melalui adanya teknologi seperti *platform* pembelajaran *online* dan penggunaan aplikasi interaktif memungkinkan pembelajaran lebih mudah diakses dan fleksibel (Ningsih, 2024). Penggunaan alat bantu digital seperti ini semakin memperkaya pengalaman belajar dan memperoleh pengalaman praktis tanpa terikat pada batasan ruang dan waktu. Integrasi teknologi dalam pembelajaran tidak hanya meningkatkan efektivitas pembelajaran tetapi juga mempersiapkan siswa untuk menghadapi tantangan di era digital yang semakin kompleks.

Meskipun teknologi telah membawa kemajuan dalam pendidikan, pembelajaran fisika masih menghadapi tantangan serius. Fisika kerap dianggap sulit oleh siswa karena sifat materinya yang abstrak, dipenuhi formula, serta menuntut pemahaman mendalam dan kemampuan berpikir analitis (Amalissholeh, 2023). Materi seperti gaya dan gerak, hukum Newton, serta hukum kekekalan energi dianggap sulit karena melibatkan matematika kompleks dan pemahaman hubungan antar variabel. Selain itu, konsep seperti gelombang bunyi sering sulit dipahami akibat kurangnya visualisasi konseptual, sehingga dianggap terlalu teoretis dan tidak relevan. Penelitian menunjukkan banyak siswa memiliki miskonsepsi, misalnya menganggap bunyi sebagai perpindahan materi, bukan gelombang (Rico et al., 2021). Mapau et al. (2022) menemukan bahwa penguasaan konsep gelombang sangat rendah, dengan 77% dari 115 siswa mendapat skor rendah. Hal ini sejalan dengan temuan Maulida et al. (2019), yang mencatat 77,7% siswa mengalami kesulitan, khususnya dalam memahami perambatan bunyi melalui berbagai medium. Kesulitan ini menekankan perlunya pendekatan pembelajaran yang terintegrasi dan berbasis konteks untuk meningkatkan pemahaman konsep gelombang bunyi.

Saat ini, meskipun berbagai inovasi pembelajaran telah dikembangkan metode pembelajaran konvensional masih banyak digunakan di berbagai sekolah dalam mengajarkan fisika, salah satunya SMAIT yang berlokasi di Klaten. Beberapa model pembelajaran yang menggunakan metode ceramah adalah model ekspositori dan model *direct intruction* yang keduanya berpusat pada guru dengan penyampaian informasi secara langsung, terstruktur, dan sistematis. SMAIT yang berlokasi di Klaten menggunakan model pengajaran fisika yang masih didominasi oleh pendekatan konvensional, dimana guru hanya menggunakan papan tulis dan buku LKS sebagai sumber utama belajar. Hal ini menyebabkan siswa menjadi pendengar pasif

dan pembelajaran cenderung membosankan karena hanya terfokus pada materi yang disampaikan oleh guru tanpa mengeksplorasi lebih luas. Siswa yang diajar dengan metode ceramah cenderung memiliki keterampilan belajar mandiri yang lebih rendah dibandingkan mereka yang diajarkan dengan metode interaktif atau berbasis masalah (Aziz et al., 2014). Akibatnya siswa yang diajar menggunakan metode konvensional sering kali menunjukkan prestasi akademik yang lebih rendah dibandingkan siswa yang belajar melalui pendekatan interaktif dan partisipatif. Hal ini menunjukkan perlunya transformasi model pengajaran konvensional menuju model pengajaran yang interaktif, partisipatif, dan inovatif untuk meningkatkan kualitas belajar dan hasil belajar.

Seiring berkembangnya kebutuhan akan keterampilan, pendekatan pengajaran terus mengalami transformasi dari waktu ke waktu. Salah satu pendekatan yang menonjol adalah pembelajaran berbasis siswa (student centered learning), di mana siswa menjadi peran utama yang aktif dalam proses pembelajaran dan menjadikan guru sebagai fasilitator. Beberapa model pembelajaran berbasis siswa yang saat ini sering digunakan yaitu Problem Based Learning, Discovery Learning, dan Project Based Learning yang dirancang untuk meningkatkan keterlibatan siswa, penguasaan keterampilan berpikir kritis, dan penerapan konsep dalam kehidupan nyata. Namun, implementasi di lapangan menunjukkan bahwa tidak semua sekolah menerapkan model pembelajaran ini terutama pada mata pelajaran yang dianggap sulit, termasuk fisika. Salah satu sekolah yang belum menggunakan model pembelajaran ini adalah SMAIT yang berlokasi di Klaten walaupun sudah memiliki fasilitas internet dan teknologi yang memadai. Beberapa faktor yang menghambat penerapan model pembelajaran ini adalah baik guru maupun siswa cenderung merasa lebih nyaman dengan metode pembelajaran konvensional yang berfokus pada ceramah, meskipun pendekatan tersebut kurang efektif dalam mengembangkan keterampilan abad ke-21. Di sisi lain, banyak guru masih belum terbiasa memanfaatkan teknologi sebagai bagian integral dalam proses pembelajaran, sehingga metode inovatif seperti Problem Based Learning, Discovery Learning, dan Project Based Learning belum sepenuhnya diterapkan atau dimanfaatkan secara optimal.

Problem Based Learning adalah model pembelajaran inovatif yang menempatkan siswa sebagai pusat pembelajaran melalui penyelesajan masalah yang relevan dan kontekstual. Model pembelajaran ini terdiri dari lima tahapan sintaks, yaitu pemilihan masalah yang kompleks dan realistis sebagai pemicu pembelajaran untuk mendorong keterlibatan siswa, pembentukan kelompok kecil siswa untuk berkolaborasi dalam mengeksplorasi dan menyelesaikan masalah, pendampingan oleh fasilitator yang membimbing diskusi tanpa memberikan jawaban langsung untuk mendorong pembelajaran mandiri, mengembangkan dan menyajikan hasil diskusi, dan proses refleksi di mana siswa menganalisis solusi mereka, mengevaluasi pendekatan yang diambil, serta meningkatkan pemahaman konseptual. Selain penggunaan model pembelajaran yang inovatif, penggunaan media pembelajaran inovatif juga menjadi salah satu elemen penting untuk mendukung efektivitas pembelajaran yang memungkinkan siswa memahami konsep dengan lebih mendalam dan relevan dengan kehidupan mereka. Adanya media digital dan multimedia interaktif dalam pembelajaran memiliki banyak keunggulan dibandingkan media konvensional yang meliputi fleksibilitas waktu belajar, aksesibilitas informasi yang luas, serta kemampuan untuk menyesuaikan konten dengan kebutuhan siswa Hal ini memberikan ruang bagi siswa untuk mengeksplorasi konsep secara mandalam dan mengaplikasikannya ke dalam konteks nyata, sehingga pembelajaran menjadi lebih bermakna dan relevan dengan kebutuhan mereka di era digital.

Salah satu teknologi pembelajaran yang semakin banyak digunakan dalam dunia pendidikan adalah *Scratch*, sebuah perangkat lunak pemrograman visual yang dirancang oleh MIT Media Lab pada tahun 2003 untuk memudahkan pembelajaran konsep pemrograman secara interaktif dan menyenangkan. *Scratch* adalah sebuah platform media interaktif berupa pemrograman sederhana yang bisa digunakan untuk membuat simulasi, animasi, dan

permainan menggunakan antarmuka grafis berbasis blok, yang membuatnya lebih mudah dipahami. Platform ini dapat diakses secara gratis melalui situs web resmi atau aplikasi offline, sehingga memudahkan siswa dan guru untuk memanfaatkannya kapan saja dan di mana saja (Arpaci, 2015). Dengan mengintegrasikan model *Problem Based Learning* dengan media pembelajaran berbasis *Scratch* dapat menjadi strategi yang efektif untuk meningkatkan keterlibatan siswa dan memfasilitasi pembelajaran. Memanfaatkan *Scratch* dalam kerangka *Problem Based Learning*, siswa tidak hanya belajar untuk berpikir kritis, kreatif, dan kolaborasi dimana keterampilan ini merupakan keterampilan abad-21, tetapi juga membangun identitas fisikanya.

Keterampilan berpikir kritis merupakan salah satu kemampuan utama yang sangat diperlukan dalam abad ke-21 untuk menghadapi dunia yang semakin kompleks dan dinamis. Berpikir kritis didefinisikan sebagai kemampuan untuk menganalisis, mengevaluasi, dan membuat keputusan berdasarkan pemikiran logis dan rasional yang didukung oleh fakta yang relevan (Marasri, 2019). Namun, keterampilan berpikir kritis siswa SMAIT yang berlokasi di Klaten masih tergolong rendah yang disebabkan oleh dominasi metode pengajaran tradisional yang lebih berfokus pada hafalan materi daripada mendorong siswa untuk berpikir secara mendalam dan analitis. Di sisi lain identitas siswa dalam suatu bidang studi menjadi salah satu faktor penting yang memengaruhi keberhasilan akademik dan karir mereka di masa depan. Salah satu konsep yang berkaitan dengan identitas dalam pendidikan sains adalah physics identity. Physics identity adalah konsep yang mengacu pada sejauh mana individu mengidentifikasi dirinya sebagai seseorang yang terlibat dalam fisika, baik secara akademis maupun profesional. Identitas ini mencakup rasa percaya diri terhadap kompetensi fisika, minat terhadap materi fisika, dan pengakuan dari orang lain sebagai "fisika person" (Hazari et al., 2015). Namun, siswa SMAIT yang berlokasi di Klaten masih menunjukkan physics identity yang rendah. Kondisi ini menegaskan perlunya inovasi dalam model dan media pembelajaran untuk meningkatkan kemampuan berpikir kritis dan physics identity siswa.

Penelitian mengenai pengembangan media pembelajaran fisika yang mendukung keterampilan berpikir kritis dan physics identity siswa telah dilakukan dalam berbagai studi sebelumnya, namun masih memiliki keterbatasan. Arfiansyah et al. (2019) mengembangkan media berbasis Scratch pada materi alat optik yang efektif meningkatkan hasil belajar, tetapi belum mengintegrasikan model problem based learning serta tidak mengukur dampaknya terhadap kemampuan berpikir kritis dan physics identity. Putri & Djamas (2017) mengembangkan perangkat pembelajaran berbasis keterampilan berpikir kritis dalam model Problem Based Learning yang valid dan efektif, namun belum memanfaatkan teknologi interaktif seperti Scratch. Sementara itu, Munfaridah et al. (2021) menunjukkan bahwa representasi multipel dapat meningkatkan physics identity calon guru fisika, tetapi terbatas pada konteks perguruan tinggi dan belum mengembangkan media yang relevan untuk siswa SMA. Kelemahan utama dari penelitian-penelitian tersebut adalah belum adanya integrasi antara kemampuan berpikir kritis dan physics identity dalam konteks pembelajaran fisika di SMA, serta belum memanfaatkan media pembelajaran berbasis teknologi yang inovatif. Menjawab kekosongan ini, penelitian ini menawarkan pendekatan baru melalui integrasi model Problem Based Learning dan media berbantuan Scratch yang dirancang untuk meningkatkan kemampuan berpikir kritis sekaligus membangun physics identity siswa. Pendekatan ini memadukan teknologi interaktif dan pembelajaran berbasis masalah guna mendorong eksplorasi aktif, pemecahan masalah kreatif, serta pemahaman konsep yang mendalam. Lebih dari itu, strategi ini juga memberikan pengakuan eksplisit terhadap usaha dan kemampuan siswa, memperkuat identitas mereka sebagai "fisika person" dan membangun kepercayaan diri dalam belajar. Dengan demikian, penelitian ini tidak hanya berkontribusi pada aspek kognitif, tetapi juga emosional, serta menjawab kebutuhan pembelajaran fisika abad ke-21 yang lebih kontekstual, partisipatif, dan bermakna.

METODE

Desain penelitian yang digunakan dalam penelitian ini adalah penelitian dan pengembangan atau *Research and Development* (*R&D*) dengan model 4D. Model 4D terdiri dari 4 tahapan, yaitu *Define*, *Design*, *Develop*, dan *Disseminate* (Thiagarajan, 1974). Subjek penelitian ini adalah siswa kelas XI SMAIT yang berlokasi di Klaten. Uji coba terbatas dilakukan pada 16 siswa kelas XII.A, sedangkan uji coba luas melibatkan 18 siswa kelas XI.A sebagai kelompok kontrol dan 26 siswa kelas XI.C sebagai kelompok eksperimen. Penelitian ini dilaksanakan pada semester genap tahun ajaran 2024/2025.

Gambar 1. Tahapan metode penelitian 4D

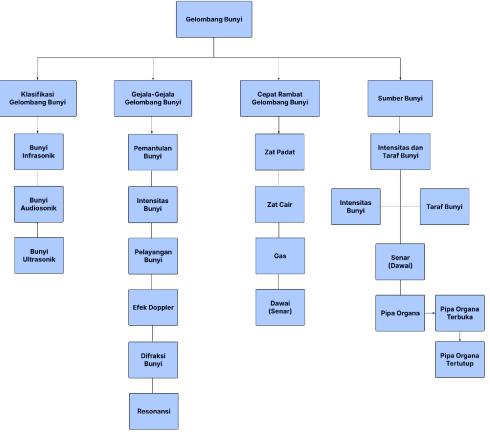
Metode pengembangan 4D (Gambar 1) tahap pertama yaitu define (pendefinisian). Tahap define dimulai dengan analisis awal untuk mengidentifikasi dan merumuskan permasalahan inti dalam proses pembelajaran di lapangan. Tujuannya adalah untuk memperoleh data faktual dan merancang alternatif solusi sebagai dasar pengembangan media pembelajaran fisika berbantuan Scratch model PBL. Tahap berikutnya adalah analisis siswa, yang dilakukan dengan mengidentifikasi karakteristik, kemampuan, serta pengalaman belajar siswa, baik secara individu maupun kelompok. Analisis ini mencakup aspek-aspek seperti tingkat kemampuan akademik, rentang usia, serta minat terhadap mata pelajaran fisika. Selanjutnya, dilakukan analisis tugas yang bertujuan untuk menentukan serta menjabarkan ruang lingkup materi ajar, dengan mengacu pada Capaian Pembelajaran (CP) serta Alur Tujuan Pembelajaran (ATP) sesuai dengan Kurikulum Merdeka. Tahap keempat adalah analisis konsep, yang dilakukan dengan menyusun alur atau peta konsep pembelajaran secara sistematis untuk mendukung pencapaian CP (Capaian Pembelajaran) melalui pengorganisasian elemenelemen kunci dalam materi ajar. Terakhir, dilakukan perumusan spesifikasi tujuan pembelajaran, yang disusun berdasarkan hasil analisis tugas dan analisis konsep sebelumnya. Tujuan pembelajaran ini menjadi dasar dalam merancang aktivitas pembelajaran serta penyusunan perangkat pembelajaran yang relevan dan efektif.

Tahap kedua yaitu *design* (perancangan), yang diawali dengan pengembangan perangkat ajar berupa media pembelajaran fisika berbantuan *Scratch* model PBL, yang dirancang berdasarkan hasil analisis kebutuhan pada tahap sebelumnya. Perencanaan pembelajaran dituangkan dalam modul ajar yang mengacu pada prinsip diferensiasi dan asesmen formatif sesuai dengan karakteristik Kurikulum Merdeka. Selanjutnya, disusun pula instrumen pengumpulan data yang mencakup angket *physics identity*, angket respons siswa terhadap media, lembar soal *pretest* dan *posttest*, lembar penilaian kelayakan media, LKPD dan modul ajar, lembar validasi instrumen (angket dan tes), serta lembar observasi keterlaksanaan modul ajar dalam proses pembelajaran.

Tahap pengembangan ketiga yaitu develop (pengembangan), yang dimulai dengan

validasi media pembelajaran fisika berbantuan *Scratch* model PBL oleh dosen ahli dan guru Fisika SMA sebagai validator praktisi untuk memastikan kelayakan perangkat ajar dan instrumen penelitian sebelum diuji coba. Validasi dilakukan melalui lembar penilaian dan saran perbaikan, yang kemudian digunakan untuk merevisi produk tahap awal. Setelah revisi, produk diuji coba secara terbatas pada siswa melalui *pretest*, penggunaan media, angket respons, angket *physics identity*, dan *posttest* guna mengidentifikasi kekurangan. Revisi tahap dua dilakukan berdasarkan hasil uji coba terbatas dan masukan siswa. Uji coba lapangan selanjutnya dilakukan dengan desain *pretest-posttest control group* untuk mengukur efektivitas media dalam meningkatkan keterampilan berpikir kritis dan *physics identity*, di mana kelas eksperimen menggunakan media *Scratch* model PBL dan kelas kontrol menggunakan *PowerPoint*.

Tahap terakhir yaitu *disseminate* (penyebaran) yang dilakukan dengan menyebarluaskan produk yang dikembangkan yaitu media pembelajaran fisika berbantuan *Scratch* model PBL kepada siswa dan guru fisika SMAIT yang berlokasi di Klaten, serta dilakukan dengan membuat artikel yang akan diterbitkan melalui *e-journal*.


Teknik analisis data dalam penelitian ini menggunakan pendekatan kuantitatif, meliputi: (1) validasi instrumen dengan Aiken's V, (2) kelayakan produk menggunakan Simpangan Baku Ideal (SBI), (3) analisis hasil respons siswa terhadap media, (4) keterlaksanaan modul ajar dengan Interjudge Agreement (IJA), (5) peningkatan keterampilan berpikir kritis dan physics identity siswa dianalisis menggunakan normalized gain (N-Gain), (6) uji validitas dan reliabilitas soal/angket dengan program QUEST, dan (7) analisis keefektifan media dengan uji Manova, uji Paired Sample t-Test, dan uji Effect Size.

HASIL DAN PEMBAHASAN

Hasil dan pembahasan dalam penelitian ini meliputi data kuantitatif dan kualitatif. Data kuantitatif mencakup hasil penilaian kelayakan modul ajar, LKPD, dan media pembelajaran Fisika berbantuan *Scratch* model PBL menggunakan analisis Simpangan Baku Ideal (SBI), hasil validasi instrumen tes, angket *physics identity*, dan angket respons siswa melalui analisis indeks *Aiken's V*, serta hasil *pretest-posttest* dan angket *physics identity* yang dianalisis menggunakan *N-Gain*. Sementara itu, data kualitatif diperoleh dari masukan dua validator, yaitu dosen pendidikan Fisika FMIPA UNY sebagai ahli, dan guru Fisika SMAIT yang berlokasi di Klaten sebagai praktisi.

Hasil

Hasil penelitian ini diuraikan berdasarkan data yang diperoleh selama proses penelitian, serta disesuaikan dengan tahapan dalam model pengembangan 4D, yang mencakup tahap *Define, Design, Develop*, dan *Disseminate*. Pada tahap *define*, ddiperoleh hasil bahwa pembelajaran fisika di kelas XI belum sepenuhnya menerapkan prinsip Kurikulum Merdeka. Proses belajar masih berpusat pada guru, dengan metode ceramah dan hanya mengandalkan buku LKS sebagai satu-satunya sumber belajar. Kondisi ini berdampak pada rendahnya partisipasi aktif siswa yang tampak pasif, kurang fokus, bahkan ada yang menggunakan *smartphone* untuk keperluan non-akademik atau tertidur saat pembelajaran berlangsung. Interaksi dalam kelas juga masih terbatas karena siswa jarang bertanya dan kesulitan menjawab pertanyaan dari guru, menunjukkan bahwa pembelajaran belum mengakomodasi kebutuhan dan potensi individu secara optimal. Berdasarkan capaian pembelajaran yang sesuai, disusun peta konsep materi Gelombang Bunyi yang ditampilkan pada Gambar 2.

Gambar 2. Peta Konsep Materi Gelombang Bunyi

Spesifikasi tujuan pembelajaran materi Gelombang Bunyi dibagi menjadi 3, yaitu tujuan kognitif, tujuan afektif, dan tujuan psikomotor. Pada tujuan kognitif, siswa mampu memahami dan menjelaskan konsep, prinsip, dan karakteristik gelombang bunyi. Kemudian pada tujuan afektif, siswa dapat menunjukkan rasa ingintahu, sikap kritis, dan tanggung jawab dalam mengamati, mempelajari, serta memahami fenomena gelombang bunyi. Selanjutnya tujuan psikomotor, siswa mampu mengidentifikasi, merumuskan, dan memecahkan masalah menggunakan pendekatan sistematis.

Pada tahap *design* diperoleh hasil rancangan awal media pembelajaran fisika berbantuan *Scratch* model PBL. Hasil rancangan tersebut dapat dilihat pada Tabel 1.

Tabel 1. Rancangan Awal Media Scratch

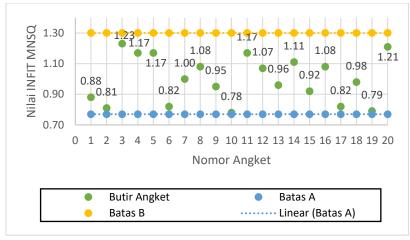
	Tabel 1. Kancangan Awai Media Seruten				
No.	Rancangan	Keterangan			
1.	Komponen Media Scratch	Komponen-komponen yang terdapat di dalam media <i>Scratch</i> meliputi: a) <i>Cover</i> b) Tampilan awal : identitas pengembang dan petunjuk penggunaan c) Tampilan alur petualangan : CP dan ATP, pertanyaan pemantik, LKPD, animasi interaktif, materi, kesimpulan d) Penutup : Refleksi			
2.	Materi/Isi Media Scratch	Materi yang digunakan dalam pengembangan media pembelajaran fisika berbantuan <i>Scratch</i> adalah Gelombang Bunyi. Adapun cakupan submateri meliputi konsep dasar gelombang bunyi, sifat dan karakteristiknya, cepat rambat bunyi, dan intensitas bunyi, serta faktor-faktor yang memengaruhi			

	kecepatan rambat bunyi dalam berbagai medium. Selain itu, dibahas pula efek Doppler, resonansi, dan taraf intensitas bunyi. Sumber materi diperoleh dari buku fisika kelas XI serta referensi terpercaya dari internet.				
3. Desain Media Scratch	Desain media pembelajaran <i>Scratch</i> dirancang dengan mempertimbangkan aspek visual seperti pemilihan warna, latar belakang, bentuk, jenis huruf, gambar, serta tampilan sampul yang menarik. Tema yang diambil yaitu petualangan superhero " <i>Resonance Ranger</i> ". Media pembelajaran <i>Scratch</i> ini dikembangkan menggunakan model <i>Problem Based Learning</i> (PBL) dan dilengkapi dengan animasi interaktif serta Lembar Kerja Siswa (LKPD) yang berfungsi sebagai penunjang kegiatan pembelajaran untuk mendorong keterampilan berpikir kritis dan <i>physics identity</i> siswa.				

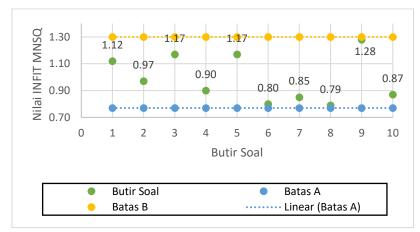
Pada tahap *develop*, proses pengembangan diawali dengan penilaian oleh validator ahli dan praktisi terhadap produk yang telah disusun, yang meliputi media pembelajaran fisika berbantuan *Scratch* model PBL, modul ajar, LKPD, instrumen soal tes, angket *physics identity*, serta angket respons siswa. Hasil dari analisis penilaian tersebut dapat dilihat dalam Tabel 2.

Tabel 2. Hasil Penilaian Kelayakan Instrumen Penelitian

No.	Instrumen Penelitian	Rata-Rata	Kriteria
1.	Media Pembelajaran Scratch	2,2	Sangat Layak
2.	Modul Ajar	2,1	Sangat Layak
3.	LKPD	2,0	Sangat Layak


Berdasarkan analisis yang telah dilakukan, nilai rata-rata terhadap media pembelajaran *Scratch*, modul ajar, dan LKPD berada dalam rentang 2,0 hingga 2,2 yang tergolong dalam kriteria sangat layak. Dengan demikian, instrumen yang dikembangkan dinyatakan layak untuk digunakan dalam penelitian. Selain itu, analisis lanjutan dilakukan menggunakan indeks *Aiken's V*, sebagaimana ditampilkan pada Tabel 3.

Tabel 3. Hasil Penilaian Validitas Instrumen Penelitian


No.	Instrumen Penelitian	Rata-Rata	Kriteria
1.	Soal Pretest dan Posttest	0,97	Sangat Valid
2.	Angket Physics identity	0,99	Sangat Valid
3.	Angket Respons Siswa	0,87	Sangat Valid

Berdasarkan analisis yang telah dilakukan, nilai rata-rata *Aiken's V* untuk soal *pretest* dan *posttest*, angket *physics identity*, dan angket respons siswa terhadap media berada dalam rentang 0,87 hingga 0,99 yang tergolong dalam kriteria sangat valid. Hal ini mengindikasikan bahwa instrumen yang dikembangkan memiliki validitas yang kuat dan layak digunakan dalam penelitian. Seluruh instrumen telah melalui proses validasi oleh para ahli dan direvisi sesuai dengan masukan sebelum diterapkan dalam uji coba terbatas.

Pada tahap uji coba terbatas, diperoleh data terkait validitas dan reliabilitas soal *pretest* dan *posttest*, serta angket respons siswa, disertai dengan analisis daya beda dan tingkat kesukaran soal *pretest* dan *posttest*. Adapun hasil dari uji coba terbatas yang telah dilaksanakan disajikan sebagai berikut.

Gambar 3. Validitas Empiris Angket *Physics identity*

Gambar 4. Validitas Empiris Soal Pretest dan Posttest

Berdasarkan Gambar 3 dan Gambar 4, diperoleh hasil analisis validitas angket *physics identity* dan soal *pretest* dan *posttest* yang mengindikasikan bahwa setiap butir pernyataan dalam angket dan soal sesuai dengan model PCM. Hal ini dibuktikan dengan nilai INFIT MNSQ yang berada dalam rentang 0,77 – 1,30, yang di mana menunjukkan bahwa seluruh butir pernyataan memiliki tingkat kesesuaian yang baik dengan model pengukuran yang digunakan. Dengan demikian, seluruh butir pernyataan dalam angket dan soal dapat digunakan untuk pengambilan data pada tahap uji lapangan.

Tabel 4. Hasil Analisis Butir Soal

Tingkat Kesukaran Keterangan	Nilai	Daya Beda Keterangan
	Nilai	Keterangan
Sadana		110001angan
Sedang	0,36	Sedang
Sedang	0,70	Tinggi
Sedang	0,54	Tinggi
Sulit	0,36	Sedang
Sulit	0,25	Sedang
Sulit	0,42	Tinggi
Sedang	0,55	Tinggi
Sedang	0,54	Tinggi
Sangat Sulit	0,40	Sedang
Sedang	0,46	Tinggi
	Sedang Sulit Sulit Sulit Sulit Sedang Sedang Sedang Sangat Sulit	Sedang 0,70 Sedang 0,54 Sulit 0,36 Sulit 0,25 Sulit 0,42 Sedang 0,55 Sedang 0,54 Sangat Sulit 0,40

Berdasarkan hasil analisis butir soal pada Tabel 4, menunjukkan bahwa tingkat kesukaran soal *pretest* dan *posttest* tersebar dalam kategori sedang, sulit hingga sangat sulit. Sementara itu, daya pembeda soal tergolong dalam kategori sedang dan tinggi. Hal ini menunjukkan bahwa butir soal *pretest* dan *posttest* dapat digunakan untuk pengambilan data pada tahap uji lapangan. Selanjutnya, hasil respons siswa terhadap media pembelajaran dapat dilihat pada Tabel 5.

Tabel 5. Hasil Analisis Respons Siswa Terhadap Media

No.	Aspek Penilaian	Rata-Rata	Kriteria
1.	Tampilan	3,66	Sangat Baik
2.	Materi dan Isi	3,34	Sangat Baik
3.	Penggunaan Media	3,54	Sangat Baik
4.	Bahasa	3,36	Sangat Baik
5.	Fungsi dan Manfaat	3,52	Sangat Baik
	Rata-Rata	3,48	Sangat Baik

Berdasarkan analisis pada Tabel 5, diperoleh nilai rata-rata sebesar 3,48 yang termasuk dalam kategori sangat baik, dengan rata-rata tiap aspek berada pada kategori sangat baik. Hal ini menunjukkan bahwa media pembelajaran fisika berbantuan *Scratch* model PBL dapat digunakan dalam penelitian. Selanjutnya, dilakukan serangkaian uji prasyarat pada tahap uji lapangan, meliputi uji normalitas, homogenitas, uji *pearson correlation*, dan dilanjutkan dengan uji hipotesis yang meliputi uji Manova, uji *paired sample t-test*, dan *effect size*.

Tabel 6. Uji Normalitas

No.	Kelas	Variabel	Statistic	df	Sig.
		Berpikir Kritis	0,924	26	0,056
1.	Eksperimen	Physics identity Kompetensi	0,924	26	0,056
		Physics identity Minat	0,975	26	0,753
		Berpikir Kritis	0,897	18	0,051
2.	Kontrol	Physics identity Kompetensi	0,897	18	0,051
		Physics identity Minat	0,930	18	0,191

Tabel 7. Uii Homogenitas

No.	Variabel Teruji	Levene Statistic	Sig. (Based on Mean)	Interpretasi
1.	Berpikir Kritis	0,884	0,353	Homogen
2.	Physics identity Kompetensi	0,884	0,353	Homogen
3.	Physics identity Minat	2,741	0,105	Homogen

Berdasarkan hasil analisis Tabel 6 dan Tabel 7, menunjukkan bahwa nilai dari *p-value* tersebut berada di atas nilai signifikasi sebesar 0,05. Hal ini mengindikasikan bahwa data memiliki distribusi normal, sehingga dapat dilakukan analisis parametrik serta bahwa varians data populasi bersifat homogen.

Tabel 8. Uji Pearson Correlation

No.	Variabel		Berpikir Kritis	Physics identity
1	Berpikir Kritis	Pearson's r	1	0,412
1.		p-value		0,036
2	Physics identity	Pearson's r	0.412	1
۷.		p-value	0,036	

Berdasarkan hasil analisis Tabel 8, menujukkan hasil analisis *p-value* untuk hubungan antara keterampilan berpikir kritis dan *physics identity* siswa, yang diperoleh sebesar 0,036. Karena nilai *p-value* ini lebih kecil dari tingkat signifikansi 0,05. Dengan demikian, peningkatan dalam keterampilan berpikir kritis siswa akan diikuti oleh peningkatan *physics identity* siswa, dan sebaliknya, penurunan dalam keterampilan berpikir kritis juga akan berdampak pada penurunan *physics identity* siswa. Selain itu, nilai pearson's r yang diperoleh sebesar 0,412 menunjukkan bahwa hubungan antara kedua variabel tersebut sedang.

Tabel 9. Uji Paired Sample t-Test

No.	Variabel Teruji	T	Sig.
1.	Keterampilan Berpikir Kritis	-16,303	<.001
2.	Physics identity	-29,675	<.001

Berdasarkan hasil analisis Tabel 9, menunjukkan *p-value* kurang dari 0,001 yang berarti bahwa nilai kurang dari tingkat signifikansi 0,05. Hal ini mengindikasikan bahwa nilai keterampilan berpikir kritis dan *physics identity* siswa terdapat perbedaan.

Tabel 10. Hasil Multivariate Test

No.	Effect	Value	F	Hypothesis df.	Eror df.	Sig.
1.	Wilks' lambda	0,813	$4,715^{b}$	2,000	41,000	0,014

Tabel 11. Test of Between-Subject Effect

No.	Source	Variabel Teruji	F	Sig.
1.	Voles -	Berpikir Kritis	4,849	0,033
	Kelas –	Physics identity	7,202	0,010

Berdasarkan hasil analisis pada Tabel 10 dan Tabel 11, diperoleh nilai signifikansi sebesar 0,014 yang lebih kecil dari taraf signifikansi 0,05, sehingga H₀ ditolak dan H_a diterima. Hal ini menunjukkan adanya perbedaan peningkatan keterampilan berpikir kritis dan *physics identity* antara kelas eksperimen dan kelas kontrol. Selanjutnya, Tabel 11 menunjukkan nilai signifikansi sebesar 0,033 untuk keterampilan berpikir kritis dan 0,010 untuk *physics identity*, yang keduanya berada di bawah batas signifikansi 0,05. Hal ini menunjukkan bahwa media pembelajaran fisika berbantuan *Scratch* dengan model *Problem Based Learning* memberikan pengaruh yang signifikan terhadap peningkatan keterampilan berpikir kritis dan *physics identity* siswa.

Tabel 12. Hasil Uji Effect Size

No.	Variabel Teruji	t	Eta Squared	Kriteria
1.	Keterampilan Berpikir Kritis	42,252	0,977	Sangat Tinggi
2.	Physics identity	80,556	0,994	Sangat Tinggi

Berdasarkan hasil analisis pada Tabel 12, media pembelajaran yang dikembangkan memberikan pengaruh terhadap keterampilan berpikir kritis sebesar 0,977, yang dikategorikan dalam tingkat sangat tinggi. Sementara itu, pengaruh terhadap *physics identity* mencapai 0,994, yang termasuk dalam kategori sangat tinggi. Hal ini menunjukkan bahwa media pembelajaran fisika berbantuan *Scratch* model *Problem Based Learning* memiliki kontribusi yang signifikan dalam meningkatkan keterampilan berpikir kritis dan *physics identity* siswa di tingkat SMA.

Pembahasan

Produk akhir dari penelitian ini berupa media pembelajaran fisika berbantuan Scratch

model *Problem Based Learning* pada materi gelombang bunyi. Validitas dan kelayakan media telah melalui proses uji oleh para ahli dan praktisi di bidang pendidikan, sementara efektivitas dan keterbacaannya dievaluasi berdasarkan tanggapan serta tingkat pemahaman siswa terhadap materi. Subjek penelitian mencakup 44 siswa kelas XI.A dan XI.C di SMAIT yang berlokasi di Klaten. Hasil penelitian yang diperoleh dibahas secara mendalam sebagai berikut.

1. Deskripsi Media Pembelajaran Fisika Berbantuan Scratch Model PBL

Media pembelajaran fisika berbantuan *Scratch* dengan model Problem Based Learning dikembangkan sebagai solusi inovatif untuk meningkatkan pemahaman konsep fisika melalui pengalaman belajar interaktif dan berorientasi pada pemecahan masalah nyata. Pengembangan media ini berpedoman pada Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Nomor 032/H/KR/2024 tentang capaian pembelajaran pada Kurikulum Merdeka, disesuaikan dengan tuntutan pembelajaran abad ke-21 yang menekankan pengembangan keterampilan berpikir kritis dan peningkatan *physics identity* siswa. Menurut Restudila et al. (2023), penerapan Problem Based Learning efektif mengembangkan keterampilan berpikir tingkat tinggi melalui tantangan kontekstual, sementara Malik & Susanti (2021) menemukan bahwa pendekatan ini berperan dalam meningkatkan *physics identity* melalui keterlibatan aktif dalam pemecahan masalah dan eksplorasi konsep ilmiah.

Media pembelajaran ini menggunakan tema petualangan dengan superhero berkekuatan gelombang bunyi sebagai pemandu, berfokus pada materi gelombang bunyi yang mencakup sifat-sifat gelombang, klasifikasi bunyi, cepat rambat bunyi, efek Doppler, resonansi, intensitas dan taraf intensitas. Struktur media terdiri dari beberapa bagian utama: cover dengan tombol start, petunjuk penggunaan sebagai panduan siswa, identitas penyusun untuk kredibilitas, peta petualangan sebagai navigasi progres pembelajaran, tujuan dan capaian pembelajaran yang menjelaskan kompetensi yang diharapkan, serta animasi interaktif yang dirancang memberikan pengalaman eksploratif mendalam, seperti animasi sirene ambulans yang mendemonstrasikan efek Doppler dan menjadi orientasi masalah utama bagi siswa.

Fitur penting lainnya dalam media ini adalah bagian materi pembelajaran yang berfungsi sebagai penguatan pemahaman setelah siswa melakukan penyelidikan, serta bagian kesimpulan untuk merangkum konsep-konsep utama dan membantu siswa merefleksikan pemahaman mereka. Secara keseluruhan, media pembelajaran ini menawarkan pendekatan inovatif dan efektif dalam meningkatkan pemahaman konsep fisika dengan mengintegrasikan teknologi, metode pembelajaran berbasis masalah, dan interaktivitas digital dalam konsep petualangan, sehingga diharapkan mampu memberikan pengalaman belajar yang bermakna, menyenangkan, serta membangun keterampilan berpikir kritis dan *physics identity* yang kuat bagi siswa.

2. Kelayakan Media Pembelajaran Fisika Berbantuan Scratch Model PBL

Media pembelajaran fisika berbantuan *Scratch* dengan model PBL dikembangkan untuk meningkatkan keterampilan berpikir kritis dan pembentukan *physics identity* siswa melalui pemecahan masalah nyata dan pengalaman belajar kontekstual. Proses validasi media dilakukan oleh ahli dari Universitas Negeri Yogyakarta dan praktisi guru dari SMAIT Hidayah Klaten menggunakan skala Likert 1-4 yang menurut Kusmaryono & Wijayanti (2022) bertujuan menghilangkan pilihan netral untuk mendorong jawaban lebih tegas. Rohmad (2021) juga menyatakan penggunaan skala ini meningkatkan kejelasan interpretasi data, dimana data ordinal diolah menggunakan method of successive interval (MSI) untuk interpretasi kuantitatif.

Hasil penilaian kelayakan media menunjukkan skor rata-rata keseluruhan 2,2 (kategori sangat layak), dengan rincian aspek tampilan 1,7 (layak), materi dan isi 2,7 (sangat layak), kemudahan penggunaan 2,0 (layak), bahasa 1,8 (layak), serta fungsi dan manfaat 2,7

(sangat layak). Aspek materi dan isi yang tinggi menunjukkan kesesuaian dengan kurikulum dan kemampuan menyajikan konsep fisika secara menarik dan kontekstual, sementara aspek fungsi dan manfaat yang juga tinggi mengindikasikan efektivitas media dalam meningkatkan pemahaman siswa, mengembangkan keterampilan berpikir kritis, dan memperkuat *physics identity*.

Meskipun secara keseluruhan media dinilai sangat layak dan memiliki potensi besar untuk diterapkan dalam pembelajaran fisika di tingkat SMA, beberapa aspek seperti tampilan, kemudahan penggunaan, dan bahasa masih memerlukan penyempurnaan. Keunggulan utama media ini terletak pada kemampuannya mendukung pembentukan *physics identity* siswa melalui penyajian materi berbasis masalah yang mendorong eksplorasi aktif, visualisasi fenomena fisika melalui fitur interaktif *Scratch*, dan pengintegrasian konsep fisika dengan situasi kehidupan nyata, sehingga menjadikan pembelajaran lebih kontekstual dan relevan bagi siswa.

3. Kepraktisan Media Pembelajaran Fisika Berbantuan Scratch Model PBL

Kepraktisan media pembelajaran fisika berbantuan *Scratch* model PBL didasarkan pada hasil analisis angket respons dari siswa kelas XII.A SMAIT yang berlokasi di Klaten. Penilaian mencakup aspek tampilan, materi dan isi, kemudahan penggunaan, bahasa, serta fungsi dan manfaat, dengan data ordinal yang dikonversi menjadi data interval menggunakan *method of successive interval* (MSI) dan dianalisis menggunakan simpangan baku ideal (SBI). Hasil analisis menunjukkan rata-rata nilai kepraktisan sebesar 3,48 yang termasuk dalam kategori sangat praktis, mengindikasikan bahwa media pembelajaran ini didesain dengan mempertimbangkan kemudahan akses dan penggunaan, sejalan dengan penelitian Sari et al. (2022) yang menyatakan kepraktisan suatu media pembelajaran dapat diukur dari kemudahan aksesibilitasnya.

Aspek tampilan memperoleh skor tertinggi 3,66 (sangat praktis) berkat antarmuka menarik, kombinasi warna nyaman, dan animasi interaktif, dengan penempatan elemen pembelajaran yang sistematis untuk mempermudah navigasi dan pemahaman siswa, mendukung temuan Daniati et al. (2023) bahwa desain dan tampilan menarik dapat meningkatkan motivasi belajar. Materi dan isi dinilai sangat praktis dengan skor 3,34, menunjukkan kesesuaian dengan standar kompetensi yang disertai ilustrasi visual, animasi interaktif, dan soal berbasis pemecahan masalah, sementara aspek kemudahan penggunaan mendapat skor 3,54 (sangat praktis) karena mudah dioperasikan pada berbagai perangkat seperti handphone, komputer, atau laptop, dan aspek kebahasaan dinilai sangat praktis dengan skor 3,36 berkat penggunaan bahasa Indonesia yang baik, benar, dan komunikatif.

Media pembelajaran ini mendukung pengembangan keterampilan berpikir kritis siswa melalui aktivitas yang menuntut analisis permasalahan, pengembangan hipotesis, dan pencarian solusi berdasarkan prinsip fisika, sesuai dengan penelitian Minarti et al. (2023) yang menegaskan bahwa model PBL dapat meningkatkan keterampilan berpikir kritis. Aspek fungsi dan manfaat media memperoleh skor 3,52 (sangat praktis), menunjukkan nilai kebermanfaatan tinggi karena tidak hanya memudahkan pemahaman materi fisika, tetapi juga memperkaya pengalaman belajar melalui interaksi dengan animasi dan aktivitas berbasis *Scratch*, sehingga secara keseluruhan media pembelajaran fisika berbantuan *Scratch* dengan model PBL memiliki tingkat kepraktisan sangat tinggi dalam membantu siswa mengembangkan pemahaman konsep fisika, keterampilan berpikir kritis, dan *physics identity*.

4. Efektivitas Media Pembelajaran Fisika Berbantuan Scratch Model PBL

Penelitian ini menganalisis efektivitas media pembelajaran fisika berbantuan *Scratch* dalam model Problem Based Learning untuk meningkatkan keterampilan berpikir kritis dan *physics identity* siswa. Pendekatan Problem Based Learning menurut Zuananta et al. (2024) mendorong siswa menyelesaikan masalah-masalah kontekstual yang menuntut

analisis, sintesis, dan evaluasi konsep fisika secara kritis, sehingga siswa aktif mengkonstruksi pemahaman sendiri berdasarkan eksplorasi masalah nyata. Efektivitasnya dibuktikan melalui uji *paired sample T-test* dengan nilai signifikansi <.001 (lebih kecil dari batas signifikansi 0,05) dan uji *multivariate analysis of variance* (MANOVA) dengan nilai Wilks'Lambda sebesar 0,014, menunjukkan adanya perbedaan signifikan antara kelompok eksperimen dan kontrol dalam peningkatan keterampilan berpikir kritis dan *physics identity* siswa.

Peningkatan keterampilan berpikir kritis pada kelas eksperimen dipicu oleh struktur pembelajaran berbasis masalah dalam *Scratch* yang mendorong siswa mengidentifikasi dan menganalisis permasalahan secara mandiri, menguji dan memvalidasi konsep melalui eksplorasi, serta meningkatkan kemampuan mengajukan pertanyaan kritis dan menginterpretasikan informasi secara logis. Analisis *effect size* menggunakan rumus Eta Squared menunjukkan nilai 0,977 untuk keterampilan berpikir kritis dan 0,994 untuk *physics identity*, keduanya termasuk kategori sangat tinggi. Ma'rifah et al. (2023) menyatakan penggunaan *Scratch* memungkinkan siswa mengembangkan keterampilan berpikir kritis melalui eksplorasi mandiri sekaligus memperkuat *physics identity* mereka, sementara Herawati et al. (2024) menunjukkan bahwa *Scratch* mendorong siswa berpikir secara sistematis dan analitis dalam menyelesaikan masalah fisika.

Berbagai penelitian mendukung efektivitas pembelajaran berbasis pemrograman interaktif dalam meningkatkan keterampilan berpikir kritis dan *physics identity*. Putri et al. (2024) menunjukkan pentingnya pembelajaran interaktif untuk meningkatkan keterampilan berpikir kritis dalam pembelajaran fisika, sejalan dengan penelitian Pratama et al. (2023) bahwa media pembelajaran interaktif meningkatkan pemahaman konsep fisika dan partisipasi aktif siswa. Wahyuni & Perdana (2024) mengungkapkan *Scratch* memungkinkan siswa berpartisipasi aktif sehingga meningkatkan minat dan keterlibatan dalam pelajaran fisika. Meskipun demikian, media ini memiliki keterbatasan dalam membantu siswa memahami konsep kompleks seperti resonansi dalam tabung tertutup dan terbuka serta interferensi bunyi dan pola layangan, sehingga diperlukan pendekatan tambahan seperti eksperimen langsung atau simulasi berbasis analisis data untuk memperkuat pemahaman konsep-konsep gelombang bunyi yang lebih kompleks.

SIMPULAN

Berdasarkan hasil analisis dan pembahasan yang diperoleh, maka dapat disimpulkan bahwa: 1) media pembelajaran *Scratch* model *Problem Based Learning* pada materi gelombang bunyi layak digunakan berdasarkan hasil penilaian validator ahli dan praktisi pendidikan; 2) media pembelajaran *Scratch* yang dikembangkan praktis digunakan berdasarkan respons siswa pada uji coba terbatas yang dilakukan; dan 3) media pembelajaran *Scratch* efektif digunakan sebagai media pembelajaran fisika materi gelombang bunyi untuk meningkatkan keterampilan berpikir kritis dan *physics identity* siswa SMA.

DAFTAR PUSTAKA

- Amalissholeh, N., Sutrio, S., Rokhmat, J., & Gunada, I. W. (2023). Analisis Kesulitan Belajar Siswa pada Pembelajaran Fisika di SMAN 1 Kediri. *Empiricism Journal*, 4(2), 356-364.
- Arfiansyah, L. P., Akhlis, I., & Susilo, S. (2019). Pengembangan media pembelajaran berbasis Scratch pada pokok bahasan Alat Optik. *UPEJ Unnes Physics Education Journal*, 8(1), 66-74.
- Arpacı, I. (2015). A Study on the adoption of Scratch by pre-service information technology teachers.

- Aziz, M. S., Zain, A. N. M., Samsudin, M. A. B., & Saleh, S. B. (2014). The effects of problem-based learning on self-directed learning skills among physics undergraduates. *International Journal of Academic Research in Progressive Education and Development*, 3(1), 126-137.
- Daniati, N., Novianti, Y., & Mashuri, K. (2023). Pemanfaatan Media Pembelajaran Berbasis Canva untuk Meningkatkan Motivasi Belajar Siswa pada Pembelajaran IPS Kelas VII di SMP PAB 7 Tandem Hilir. *JIIP-Jurnal Ilmiah Ilmu Pendidikan*, 6(8), 5611-5617.
- Hazari, Z., Cass, C., & Beattie, C. (2015). Obscuring power structures in the physics classroom: Linking teacher positioning, student engagement, and physics identity development. *Journal of Research in Science Teaching*, 52(6), 735-762.
- Herawati, N. I., Kuswanto, H., Wahyuni, M., & Aristaria, A. (2024). Scratch-Assisted Computational Thinking in Physics: A Literature Review. *JIPF (Jurnal Ilmu Pendidikan Fisika)*, 9(1), 105-113.
- Kusmaryono, I., Wijayanti, D., & Maharani, H. R. (2022). Number of Response Options, Reliability, Validity, and Potential Bias in the Use of the Likert Scale Education and Social Science Research: A Literature Review. *International Journal of Educational Methodology*, 8(4), 625-637.
- Malik, A., & Susanti, S. (2021). Learning designing for establishment physics content and teacher pedagogic aspects through lesson study-based in-house training. *Jurnal Penelitian & Pengembangan Pendidikan Fisika*, 7(2), 145-152.
- Mapau, O. B., Helmi, H., & Haris, A. (2022). Analisis Penguasaan Konsep Gelombang Siswa Man 2 Kota Makassar Di Masa Pandemi Covid-19. *Jurnal Sains Dan Pendidikan Fisika*, 18(3), 277.
- Marasri, S. (2019). Developing critical thinking skills in the 21st century. *Journal of MCU Nan Review*, *3*(2), 105-122.
- Ma'rifah, A., Maftukhin, A., Al Hakim, Y., & Akhdinirwanto, R. W. (2023). Pengembangan media pembelajaran fisika berbasis multimedia interaktif menggunakan Scratch untuk meningkatkan hasil belajar siswa. *Jurnal Kumparan Fisika*, 6(3), 185-194.
- Maulida, S. I., Prihandono, T., & Maryani, M. (2019). Pengembangan Modul Fisika Gelombang bunyi Berbasis React untuk Kelas XI IPA. *Jurnal Pembelajaran Fisika*, 8(3), 174-180.
- Minarti, I. B., Nurwahyuni, A., & Bashoriyah, R. (2023). Meningkatkan kemampuan siswa dalam berpikir kritis melalui model Problem Based Learning (PBL). *Entitas: Jurnal Pendidikan dan Teknologi Pembelajaran*, 1(2), 388-393.
- Munfaridah, N., Avraamidou, L., & Goedhart, M. (2022). Preservice physics teachers' development of physics identities: The role of multiple representations. *Research in Science Education*, 52(6), 1699-1715.
- Ningsih, E. P. (2024). Implementasi Teknologi Digital dalam Pendidikan: Manfaat dan Hambatan. *Journal EduTech*, *I*(1), 1-8.
- Oktareza, D., Noor, A., Saputra, E., & Yulianingrum, A. V. (2024). Transformasi Digital 4.0: Inovasi yang Menggerakkan Perubahan Global. *Cendekia: Jurnal Hukum, Sosial dan Humaniora*, 2(3), 661-672.
- Pratama, I. A., Subiki, S., & Harijanto, A. (2023). Pengembangan Media Pembelajaran Interaktif Fisika Sma Berbasis Adobe Animate Cc Pada Materi Hukum Gravitasi Newton. *JPF (Jurnal Pendidikan Fisika) FKIP UM Metro*, 11(1), 17-27.
- Putri, A. N. L., Sutarto, S., & Wahyuni, D. (2024). Meta Analisis Kemampuan Berpikir Kritis Siswa SMP dalam Pembelajaran IPA. *Jurnal Penelitian Pembelajaran Fisika*, *15*(1), 43-48.

- Putri, S. D., & Djamas, D. (2017). Pengembangan perangkat pembelajaran fisika berbasis keterampilan berpikir kritis dalam problem-based learning. *Jurnal Ilmiah Pendidikan Fisika Al-Biruni*, 6(1), 125.
- Restudila, E., Marsel, F. O., Putri, M. S. A., & Fitri, R. (2023). Analisis Penerapan Model Pembelajaran Problem Based Learning (PBL) dalam Meningkatkan Kemampuan Berpikir Kritis Siswa SMA pada Pembelajaran Biologi. In *Prosiding Seminar Nasional Biologi* (Vol. 3, No. 2, pp. 1420-1433).
- Rico, A., Ruiz-Gonzalez, A., Azula, O., & Guisasola, J. (2021). Learning difficulties about the sound model: A review of the literature. *ENSENANZA DE LAS CIENCIAS*, 39(2), 5-23.
- ROHMAD, D. (2021). Pengembangan Instrumen Angket. DR ROHMAD.
- Sari, D. N. I., Budiarso, A. S., & Wahyuni, S. (2022). Pengembangan E-LKPD Berbasis Problem Based Learning (PBL) untuk Meningkatkan Kemampuan Higher Order Tingking Skill (HOTS) pada Pembelajaran IPA. *Jurnal Basicedu*, 6(3), 3699–3712. https://doi.org/10.31004/basicedu.v6i3.2691
- Thiagarajan. (1974a). Instructional Development for Training Teachers of Exceptional Children: A Sourcebook. National Center for Improvement of Educational Systems.
- Wahyuni, P. D., & Perdana, R. (2024). Pengembangan Media Pembelajaran Fisika 3D Application Scratch Topik Pengukuran untuk Meningkatkan Hasil Belajar Siswa. *QUANTUM: Jurnal Pembelajaran IPA dan Aplikasinya*, 4(2), 32-38.
- Zuananta, A., Suyidno, S., & Qamariah, Q. (2024, July). Penerapan model pembelajaran Problem Based Learning (PBL) sebagai sarana untuk menambah pemahaman konsep siswa pada mata pelajaran fisika. In *Prosiding Seminar Nasional Pendidikan IPA* (Vol. 1, No. 1).